Performance of AISI 316L-stainless steel foams towards the formation of graphene related nanomaterials by catalytic decomposition of methane at high temperature

نویسندگان

چکیده

This work explores the preparation of graphene-related materials (GRMs) grown on stainless steel foams via catalytic decomposition methane (CDM). The main active phases for reaction are Fe nanoparticles segregated from stainless-steel after activation stage foam. effect feed composition and temperature has been studied in order to maximize productivity, stability selectivity GRMs. maximum productivity attained was 0.116 gC/gfoam h operating at 950 °C with a ratio CH4/H2 = 3 (42.9 %CH4:14.3 %H2). carbonaceous nanomaterials (CNMs) obtained were characterized by X-Ray diffraction, Raman spectroscopy transmission scanning electron microscopy. parameters kinetic model developed directly related relevant stages process, including carburization, diffusion-precipitation deactivation-regeneration. balance among these sequential determines overall performance activated In conditions rapid carburization NPs (pCH4 > 14 %), CNMs is favoured, avoiding an initial deactivation sites fouling amorphous carbon. After different governed CH4/H2, mainly temperature. Thus, formation GRMs, Few Layer Graphene (FLG) even graphene, favoured temperatures above 900 °C. At lower temperatures, carbon nanotubes formed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micro abrasion-corrosion of AISI 316L stainless steel

In this study, the synergistic effects of abrasion and corrosion on AISI 316L stainless steel have been investigated using a micro-abrasion test rig. A series of results from abrasioncorrosion tests conducted using the micro-abrasion rig are presented. AISI 316L stainless steel has been studied under both pure abrasion and abrasion-corrosion conditions simulated by either distilled water or 3.5...

متن کامل

Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing), in comparison with those obtained under standard/conventional process (EP) conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of fre...

متن کامل

Formation of Surface Nano/Ultrafine Structure using Deep Rolling Process on the AISI 316L Stainless Steel

Austenitic stainless steels (ASSs) have an excellent corrosion resistance but relatively-low hardness and yield strength [1,2], leading to limited usage in applications that high values of hardness and wear resistance is necessary for material surface. Therefore, surface properties such as hardness must be improved using appropriate techniques. Mechanical surface treatments such as ultrasonic s...

متن کامل

Dissimilar Welding of EN 10025 Carbon Steel to AISI 316L Stainless Steel by Friction Stir Welding

In the present Study, a dissimilar joint of carbon steel sheet EN 10025 with 316 L has been welded by FSW and the welding parameters were optimized by RSM software method. For investigation of mechanical properties and microstructural analysis carried out by using optical, scanning electron microscopes with EDS analysis, tensile and hardness test of different area of joints, SZ, TMAZ, HAZ, thei...

متن کامل

Dissimilar Welding of EN 10025 Carbon Steel to AISI 316L Stainless Steel by Friction Stir Welding

In the present Study, a dissimilar joint of carbon steel sheet EN 10025 with 316 L has been welded by FSW and the welding parameters were optimized by RSM software method. For investigation of mechanical properties and microstructural analysis carried out by using optical, scanning electron microscopes with EDS analysis, tensile and hardness test of different area of joints, SZ, TMAZ, HAZ, thei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Catalysis Today

سال: 2022

ISSN: ['0920-5861', '1873-4308']

DOI: https://doi.org/10.1016/j.cattod.2020.12.003